M1.		(a)	(i)	<u>Average/mean mass of 1 atom (of an element);</u> <u>Average mass of 1 atom × 12.</u>	1
			Mas	s 1/12 atom of ¹² C; <i>Mass 1 atom of</i> ¹² C. <i>QWC.</i>	1
		(ii)	Othe	er isotope = 46.0%;	1
			107.	$9 = \frac{(54 \times 107.1) + (46 \times ?)}{100};$ M2 whole expression.	1
			108.	8; Answer 108.8 (3 marks). Answer min 1 d.p	
			Sam oute	e electronic configuration/ same number of electrons (in r shell)/ both have 47 electrons; Janore protons and neutrons unless incorrect	1
				Not just electrons determine chemical properties.	1
	(b)	Ioni	sation;		1
		higl	h ener	gy electrons fired at sample; Allow electron gun /blasted with electrons.	1
		Acc	cceleration;		
		Wit	h elect	tric field/accelerating potential/potential difference; Allow by negative plate.	1
		Def	lectior	l;	1
		Wit	h elect	romagnet/ magnet/ magnetic field; <i>M2 dependent on M1.</i>	

(c)	(Silver) metallic (bonding);				
	Vaw/molecules CE=0.	1			
	Regular arrangement of same sized particles;	1			
	+ charge in each ion; Ignore multiple positive charges. Candidates do not need to show delocalised electrons.	1			
(d)	lonic (bonds);	1			
	Minimum 4 ions shown in 2D square arrangement placed Correctly; Do not allow multiple charges on ions.				
	Further 3 ions shown correctly in a cubic lattice;	1			
	Strong (electrostatic) forces/bonds; If vdw/molecules/covalent mentioned CE = 0 for M4 and M5.	1			
	Between <u>+ and – ions;</u> Accept between <u>oppositely charged ions</u> .	1			

[20]

M2.	(a)	$2AI + 3CuCI_2 \rightarrow 2AICI_3 + 3Cu;$ (accept multiples/fractions)
	OR	
	2AI	+ 3Cu²⁺ → 2Al³⁺ + 3Cu;

1

1

(b)	(i)	increases;	1
	(ii)	lower than expected / lower than Mg /	1
		less energy needed to ionise; e⁻ removed from (3)p sub-level;	1
		('e- removed' may be implied)	
		of higher energy / further away from nucleus / shielded by <u>3s</u> e⁻s;	1
(c)	Al⁺(g	$g) \rightarrow Al^{2*}(g) + e^{-};$	1
(d)	tren	d: increases;	1
	more	e protons / higher charge on cation / more delocalised e- / smaller	-
	aton stroi	nic/ionic radius; nger attraction between (cat)ions and delocalised/free/mobile e [_]	1
	OR		
	stroi	nger metallic bonding;	1

[9]

M3. (a) (i) positive ions (1) (attract) delocalised electrons (1) (or sea of or free or mobile) (1) Confusion with - ve ions or ionic lattice C.E. = 0

> (ii) more protons (1) (or Mg²⁺ more charge than Na⁺) attracts <u>delocalised</u> (or bonding) electrons more strongly (1)

	Delocalised: can be brought forward from (a) (i) OR more delocalised electrons (1) Attacks positive ions more (1) <u>Metallic</u> bonding is strong <u>er</u> scores one mark, only given if no other marks awarded	4	
(b)	macromolecular (1) <i>(or giant molecule etc)</i> covalent (1) <u>strong</u> covalent <u>bonds</u> (1) <i>or bonds require much energy to break</i>	3	
(c)	delocalised (OR free or sea of or mobile) electrons (1)	1	
(d)	Planes (1) weak (bonds) forces between planes (1) <i>or v.dw forces between planes</i>	2	[10]

M4.A

[1]